Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Investigation of Cu(In,Ga)Se2 thin-film formation during the multi-stage co-evaporation process

Identifieur interne : 000A03 ( Main/Repository ); précédent : 000A02; suivant : 000A04

Investigation of Cu(In,Ga)Se2 thin-film formation during the multi-stage co-evaporation process

Auteurs : RBID : Pascal:13-0044774

Descripteurs français

English descriptors

Abstract

In order to transfer the potential for the high efficiencies seen for Cu(In,Ga)Se2 (CIGSe) thin films from co-evaporation processes to cheaper large-scale deposition techniques, a more intricate understanding of the CIGSe growth process for high-quality material is required. Hence, the growth mechanism for chalcopyrite-type thin films when varying the Cu content during a multi-stage deposition process is studied. Break-off experiments help to understand the intermediate growth stages of the thin-film formation. The film structure and morphology are studied by X-ray diffraction and scanning electron microscopy. The different phases at the film surface are identified by Raman spectroscopy. Depth-resolved compositional analysis is carried out via glow discharge optical emission spectrometry. The experimental results imply an affinity of Na for material phases with a Cu-poor composition, affirming a possible interaction of sodium with Cu vacancies mainly via In(Ga)Cu antisite defects. An efficiency of 12.7% tor vacancy compound-based devices is obtained.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0044774

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Investigation of Cu(In,Ga)Se
<sub>2</sub>
thin-film formation during the multi-stage co-evaporation process</title>
<author>
<name sortKey="Caballero, R" uniqKey="Caballero R">R. Caballero</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Universidad Autónoma de Madrid, Departamento de Fisica Aplicada, Módulo 12</s1>
<s2>28049 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
<orgName type="university">Université autonome de Madrid</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kaufmann, C A" uniqKey="Kaufmann C">C. A. Kaufmann</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Efimova, V" uniqKey="Efimova V">V. Efimova</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>IFW Dresden, Institut für Komplexe Materialien, Postfach 270116</s1>
<s2>01171 Dresden</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>01171 Dresden</wicri:noRegion>
<wicri:noRegion>270116</wicri:noRegion>
<wicri:noRegion>01171 Dresden</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rissom, T" uniqKey="Rissom T">T. Rissom</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hoffmann, V" uniqKey="Hoffmann V">V. Hoffmann</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>IFW Dresden, Institut für Komplexe Materialien, Postfach 270116</s1>
<s2>01171 Dresden</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>01171 Dresden</wicri:noRegion>
<wicri:noRegion>270116</wicri:noRegion>
<wicri:noRegion>01171 Dresden</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schock, H W" uniqKey="Schock H">H. W. Schock</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0044774</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0044774 INIST</idno>
<idno type="RBID">Pascal:13-0044774</idno>
<idno type="wicri:Area/Main/Corpus">001376</idno>
<idno type="wicri:Area/Main/Repository">000A03</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1062-7995</idno>
<title level="j" type="abbreviated">Prog. photovolt.</title>
<title level="j" type="main">Progress in photovoltaics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antisite defect</term>
<term>Chalcopyrite</term>
<term>Codeposition</term>
<term>Copper</term>
<term>Copper selenides</term>
<term>Deposition process</term>
<term>Emission spectrometry</term>
<term>Film formation</term>
<term>Gallium selenides</term>
<term>Glow discharge</term>
<term>Growth mechanism</term>
<term>High efficiency</term>
<term>Indium selenides</term>
<term>Large scale</term>
<term>Manufacturing process</term>
<term>Morphology</term>
<term>Multistage circuit</term>
<term>Multistage method</term>
<term>Optical spectrometry</term>
<term>Performance evaluation</term>
<term>Quaternary compound</term>
<term>Raman spectrometry</term>
<term>Scale formation</term>
<term>Scanning electron microscopy</term>
<term>Sodium</term>
<term>Solar cell</term>
<term>Thin film</term>
<term>Vacancy</term>
<term>X ray diffraction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Formation film</term>
<term>Circuit multiétage</term>
<term>Méthode section divisée</term>
<term>Codépôt</term>
<term>Rendement élevé</term>
<term>Echelle grande</term>
<term>Entartrage</term>
<term>Procédé dépôt</term>
<term>Mécanisme croissance</term>
<term>Procédé fabrication</term>
<term>Morphologie</term>
<term>Diffraction RX</term>
<term>Microscopie électronique balayage</term>
<term>Spectrométrie Raman</term>
<term>Décharge luminescente</term>
<term>Spectrométrie optique</term>
<term>Spectrométrie émission</term>
<term>Lacune</term>
<term>Défaut antisite</term>
<term>Evaluation performance</term>
<term>Cellule solaire</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Composé quaternaire</term>
<term>Couche mince</term>
<term>Chalcopyrite</term>
<term>Cuivre</term>
<term>Sodium</term>
<term>Cu(In,Ga)Se2</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Cuivre</term>
<term>Sodium</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In order to transfer the potential for the high efficiencies seen for Cu(In,Ga)Se
<sub>2</sub>
(CIGSe) thin films from co-evaporation processes to cheaper large-scale deposition techniques, a more intricate understanding of the CIGSe growth process for high-quality material is required. Hence, the growth mechanism for chalcopyrite-type thin films when varying the Cu content during a multi-stage deposition process is studied. Break-off experiments help to understand the intermediate growth stages of the thin-film formation. The film structure and morphology are studied by X-ray diffraction and scanning electron microscopy. The different phases at the film surface are identified by Raman spectroscopy. Depth-resolved compositional analysis is carried out via glow discharge optical emission spectrometry. The experimental results imply an affinity of Na for material phases with a Cu-poor composition, affirming a possible interaction of sodium with Cu vacancies mainly via In(Ga)
<sub>Cu</sub>
antisite defects. An efficiency of 12.7% tor vacancy compound-based devices is obtained.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1062-7995</s0>
</fA01>
<fA03 i2="1">
<s0>Prog. photovolt.</s0>
</fA03>
<fA05>
<s2>21</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Investigation of Cu(In,Ga)Se
<sub>2</sub>
thin-film formation during the multi-stage co-evaporation process</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CABALLERO (R.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KAUFMANN (C. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>EFIMOVA (V.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>RISSOM (T.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HOFFMANN (V.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SCHOCK (H. W.)</s1>
</fA11>
<fA14 i1="01">
<s1>Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Universidad Autónoma de Madrid, Departamento de Fisica Aplicada, Módulo 12</s1>
<s2>28049 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>IFW Dresden, Institut für Komplexe Materialien, Postfach 270116</s1>
<s2>01171 Dresden</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>30-46</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26755</s2>
<s5>354000506315980030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>65 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0044774</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Progress in photovoltaics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In order to transfer the potential for the high efficiencies seen for Cu(In,Ga)Se
<sub>2</sub>
(CIGSe) thin films from co-evaporation processes to cheaper large-scale deposition techniques, a more intricate understanding of the CIGSe growth process for high-quality material is required. Hence, the growth mechanism for chalcopyrite-type thin films when varying the Cu content during a multi-stage deposition process is studied. Break-off experiments help to understand the intermediate growth stages of the thin-film formation. The film structure and morphology are studied by X-ray diffraction and scanning electron microscopy. The different phases at the film surface are identified by Raman spectroscopy. Depth-resolved compositional analysis is carried out via glow discharge optical emission spectrometry. The experimental results imply an affinity of Na for material phases with a Cu-poor composition, affirming a possible interaction of sodium with Cu vacancies mainly via In(Ga)
<sub>Cu</sub>
antisite defects. An efficiency of 12.7% tor vacancy compound-based devices is obtained.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Formation film</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Film formation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Formación película</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Circuit multiétage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Multistage circuit</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Circuito multipiso</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Méthode section divisée</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Multistage method</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Codépôt</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Codeposition</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Codeposición</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Rendement élevé</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>High efficiency</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Rendimiento elevado</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Echelle grande</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Large scale</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Escala grande</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Entartrage</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Scale formation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Incrustación</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Procédé dépôt</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Deposition process</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Procedimiento revestimiento</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Procédé fabrication</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Manufacturing process</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Procedimiento fabricación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Morphologie</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Morphology</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Morfología</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Microscopía electrónica barrido</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Spectrométrie Raman</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Raman spectrometry</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Espectrometría Raman</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Décharge luminescente</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Glow discharge</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Descarga luminiscente</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Spectrométrie optique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Optical spectrometry</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Espectrometría óptica</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Spectrométrie émission</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Emission spectrometry</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Espectrometría emisión</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Lacune</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Vacancy</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Cavidad</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Défaut antisite</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Antisite defect</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Defecto antisitio</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Composé quaternaire</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Quaternary compound</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Compuesto cuaternario</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Chalcopyrite</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Chalcopyrite</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Calcopirita</s0>
<s5>27</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Cobre</s0>
<s2>NC</s2>
<s5>28</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Sodium</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Sodium</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Sodio</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Cu(In,Ga)Se2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>028</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A03 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000A03 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0044774
   |texte=   Investigation of Cu(In,Ga)Se2 thin-film formation during the multi-stage co-evaporation process
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024